49 research outputs found

    Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin

    Get PDF
    1. As more and more species face anthropogenic threats, understanding the causes of population declines in vulnerable taxa is essential. However, long-term datasets, ideal to identify lasting or indirect effects on fitness measures such as those caused by environmental factors, are not always available. 2. Here we use a single year but multi-population approach on populations with contrasting demographic trends to identify possible drivers and mechanisms of seabird population changes in the north-east Atlantic, using the Atlantic puffin, a declining species, as a model system. 3. We combine miniature GPS trackers with camera traps and DNA metabarcoding techniques on four populations across the puffins’ main breeding range to provide the most comprehensive study of the species' foraging ecology to date. 4. We find that puffins use a dual foraging tactic combining short and long foraging trips in all four populations, but declining populations in southern Iceland and north-west Norway have much greater foraging ranges, which require more (costly) flight, as well as lower chick-provisioning frequencies, and a more diverse but likely less energy-dense diet, than stable populations in northern Iceland and Wales. 5. Together, our findings suggest that the poor productivity of declining puffin populations in the north-east Atlantic is driven by breeding adults being forced to forage far from the colony, presumably because of low prey availability near colonies, possibly amplified by intraspecific competition. Our results provide valuable information for the conservation of this and other important North-Atlantic species and highlight the potential of multi-population approaches to answer important questions about the ecological drivers of population trends. biologging, diet, DNA metabarcoding, dual foraging, foraging ecology, intraspecific competition, population decline, seabirdspublishedVersio

    Foraging conditions for breeding penguins improve with distance from colony and progression of the breeding season at the South Orkney Islands

    Get PDF
    Background: According to central place foraging theory, animals will only increase the distance of their foraging trips if more distant prey patches offer better foraging opportunities. Thus, theory predicts that breeding seabirds in large colonies could create a zone of food depletion around the colony, known as “Ashmole’s halo”. However, seabirds’ decisions to forage at a particular distance are likely also complicated by their breeding stage. After chicks hatch, parents must return frequently to feed their offspring, so may be less likely to visit distant foraging patches, even if their quality is higher. However, the interaction between prey availability, intra-specific competition, and breeding stage on the foraging decisions of seabirds is not well understood. The aim of this study was to address this question in chinstrap penguins Pygoscelis antarcticus breeding at a large colony. In particular, we aimed to investigate how breeding stage affects foraging strategy; whether birds foraging far from the colony visit higher quality patches than available locally; and whether there is evidence for intraspecific competition, indicated by prey depletions near the colony increasing over time, and longer foraging trips. Methods: We used GPS and temperature-depth recorders to track the foraging movements of 221 chinstrap penguins from 4 sites at the South Orkney Islands during incubation and brood. We identified foraging dives and calculated the index of patch quality based on time allocation during the dive to assess the quality of the foraging patch. Results: We found that chinstrap penguin foraging distance varied between stages, and that trips became shorter as incubation progressed. Although patch quality was lower near the colony than at more distant foraging patches, patch quality near the colony improved over the breeding season. Conclusions: These results suggest chinstrap penguin foraging strategies are influenced by both breeding stage and prey distribution, and the low patch quality near the colony may be due to a combination of depletion by intraspecific competition but compensated by natural variation in prey. Reduced trip durations towards the end of the incubation period may be due to an increase in food availability, as seabirds time their reproduction so that the period of maximum energy demand in late chick-rearing coincides with maximum resource availability in the environment. This may also explain why patch quality around the colony improved over the breeding season. Overall, our study sheds light on drivers of foraging decisions in colonial seabirds, an important question in foraging ecology

    The seabird wreck in the Bay of Biscay and South-Western Approaches in 2014: A review of reported mortality

    Get PDF
    Between December 2013 and February 2014, a series of storm events occurred in areas of the North Atlantic frequented by migratory seabirds. Prolonged exposure to sustained storm conditions was followed by an unprecedented level of seabird mortality, apparently due to starvation, exhaustion and drowning. A total of 54,982 wrecked birds was recorded along European coastlines of the North-East Atlantic over the winter; 94% of which were dead. The majority of birds found were recorded on the French coastline (79.6%), and the most impacted species was the Atlantic Puffin Fratercula arctica (53.5%). In this paper, we describe the conditions surrounding this wreck event and report the numbers of wrecked and stranded seabirds by combining reports from multiple affected countries

    Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea

    Get PDF
    Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing albatrosses to glide over vast distances. However, its use is challenging to demonstrate empirically and has yet to be confirmed in other seabirds. Here, we investigate how flap-gliding Manx shearwaters optimize their flight for dynamic soaring. We do so by deriving a new metric, the horizontal wind effectiveness, that quantifies how effectively flight harvests energy from a shear layer. We evaluate this metric empirically for fine-scale trajectories reconstructed from bird-borne video data using a simplified flight dynamics model. We find that the birds’ undulations are phased with their horizontal turning to optimize energy harvesting. We also assess the opportunity for energy harvesting in long-range, GPS-logged foraging trajectories and find that Manx shearwaters optimize their flight to increase the opportunity for dynamic soaring during favorable wind conditions. Our results show how small-scale dynamic soaring affects large-scale Manx shearwater distribution at sea.publishedVersio

    Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea

    Get PDF
    Funding: This work was supported by the University of Oxford Christopher Welch Scholarship (to J.A.K.); ASAB Undergraduate Project Scholarship (to J.A.K.); UKRI BBSRC scholarship grant number BB/M011224/1 (to J.W. and N.G.); The Queen’s College, University of Oxford (to A.L.F.); Junior Research Fellowship at St. John’s College, University of Oxford (to O.P.); Merton College, University of Oxford (to T.G.); Mary Griffiths Award (to T.G.); BBSRC David Phillips Fellowship grant numbers BB/G023913/1 and BB/ G023913/2 (to C.R.); and Jesus College, University of Oxford (to G.K.T.). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 682501) (to G.K.T.)Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing albatrosses to glide over vast distances. However, its use is challenging to demonstrate empirically and has yet to be confirmed in other seabirds. Here, we investigate how flap-gliding Manx shearwaters optimize their flight for dynamic soaring. We do so by deriving a new metric, the horizontal wind effectiveness, that quantifies how effectively flight harvests energy from a shear layer. We evaluate this metric empirically for fine-scale trajectories reconstructed from bird-borne video data using a simplified flight dynamics model. We find that the birds' undulations are phased with their horizontal turning to optimize energy harvesting. We also assess the opportunity for energy harvesting in long-range, GPS-logged foraging trajectories and find that Manx shearwaters optimize their flight to increase the opportunity for dynamic soaring during favorable wind conditions. Our results show how small-scale dynamic soaring affects large-scale Manx shearwater distribution at sea.Publisher PDFPeer reviewe

    Limited domestic introgression in a final refuge of the wild pigeon

    Get PDF
    Domesticated animals have been culturally and economically important throughout history. Many of their ancestral lineages are extinct or genetically en dangered following hybridization with domesticated relatives. Consequently, they have been understudied compared to the ancestral lineages of domestic plants. The domestic pigeon Columba livia, which was pivotal in Darwin’s studies, has maintained outsized cultural significance. Its role as a model organism spans the fields of behavior, genetics, and evolution. Domestic pigeons have hybridized with their progenitor, the Rock Dove, rendering the latter of dubious genetic sta tus. Here, we use genomic and morphological data from the putative Rock Doves of the British Isles to identify relictual undomesticated populations. We reveal that Outer Hebridean Rock Doves have experienced minimal levels of introgres sion. Our results outline the contemporary status of these wild pigeons, high lighting the role of hybridization in the homogenization of genetic lineages.publishedVersio

    Avoidance of different durations, colours and intensities of artificial light by adult seabirds

    Get PDF
    There is increasing evidence for impacts of light pollution on the physiology and behaviour of wild animals. Nocturnally active Procellariiform seabirds are often found grounded in areas polluted by light and struggle to take to the air again without human intervention. Hence, understanding their responses to diferent wavelengths and intensities of light is urgently needed to inform mitigation measures. Here, we demonstrate how diferent light characteristics can afect the nocturnal fight of Manx shearwaters Pufnus pufnus by experimentally introducing lights at a colony subject to low levels of light pollution due to passing ships and coastal developments. The density of birds in fight above the colony was measured using a thermal imaging camera. We compared number of fying shearwaters under dark conditions and in response to an artifcially introduced light, and observed fewer birds in fight during ‘light-on’ periods, suggesting that adult shearwaters were repelled by the light. This efect was stronger with higher light intensity, increasing duration of ‘light-on’ periods and with green and blue compared to red light. Thus, we recommend lower light intensity, red colour, and shorter duration of ‘light-on’ periods as mitigation measures to reduce the efects of light at breeding colonies and in their vicinity

    A new biologging approach reveals unique flightless molt strategies of Atlantic puffins

    Get PDF
    Animal-borne telemetry devices provide essential insights into the life-history strategies of far-ranging species and allow us to understand how they interact with their environment. Many species in the seabird family Alcidae undergo a synchronous molt of all primary flight feathers during the non-breeding season, making them flightless and more susceptible to environmental stressors, including severe storms and prey shortages. However, the timing and location of molt remain largely unknown, with most information coming from studies on birds killed by storms or shot by hunters for food. Using light-level geolocators with saltwater immersion loggers, we develop a method for determining flightless periods in the context of the annual cycle. Four Atlantic puffins (Fratercula arctica) were equipped with geolocator/immersion loggers on each leg to attempt to overcome issues of leg tucking in plumage while sitting on the water, which confounds the interpretation of logger data. Light-level and saltwater immersion time-series data were combined to correct for this issue. This approach was adapted and applied to 40 puffins equipped with the standard practice deployments of geolocators on one leg only. Flightless periods consistent with molt were identified in the dual-equipped birds, whereas molt identification in single-equipped birds was less effective and definitive and should be treated with caution. Within the dual-equipped sample, we present evidence for two flightless molt periods per non-breeding season in two puffins that undertook more extensive migrations (>2000 km) and were flightless for up to 77 days in a single non-breeding season. A biannual flight feather molt is highly unusual among non-passerine birds and may be unique to birds that undergo catastrophic molt, i.e., become flightless when molting. Although our conclusions are based on a small sample, we have established a freely available methodological framework for future investigation of the molt patterns of this and other seabird species

    Shearwaters know the direction and distance home but fail to encode intervening obstacles after free-ranging foraging trips

    Get PDF
    While displacement experiments have been powerful for determining the sensory basis of homing navigation in birds, they have left unresolved important cognitive aspects of navigation such as what birds know about their location relative to home and the anticipated route. Here, we analyze the free-ranging Global Positioning System (GPS) tracks of a large sample (n = 707) of Manx shearwater, Puffinus puffinus, foraging trips to investigate, from a cognitive perspective, what a wild, pelagic seabird knows as it begins to home naturally. By exploiting a kind of natural experimental contrast (journeys with or without intervening obstacles) we first show that, at the start of homing, sometimes hundreds of kilometers from the colony, shearwaters are well oriented in the homeward direction, but often fail to encode intervening barriers over which they will not fly (islands or peninsulas), constrained to flying farther as a result. Second, shearwaters time their homing journeys, leaving earlier in the day when they have farther to go, and this ability to judge distance home also apparently ignores intervening obstacles. Thus, at the start of homing, shearwaters appear to be making navigational decisions using both geographic direction and distance to the goal. Since we find no decrease in orientation accuracy with trip length, duration, or tortuosity, path integration mechanisms cannot account for these findings. Instead, our results imply that a navigational mechanism used to direct natural large-scale movements in wild pelagic seabirds has map-like properties and is probably based on large-scale gradients

    Infrasound as a cue for seabird navigation

    Get PDF
    Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements
    corecore